Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 450
Filtrar
1.
Cell Rep Med ; 5(3): 101476, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38508138

RESUMO

Endometriosis, affecting 6%-10% of women, often leads to pain and infertility and its underlying inflammatory mechanisms are poorly understood. We established endometriosis models in wild-type and IL16KO mice, revealing the driver function of IL-16 in initiating endometriosis-related inflammation. Using an in vitro system, we confirmed iron overload-induced GSDME-mediated pyroptosis as a key trigger for IL-16 activation and release. In addition, our research led to the development of Z30702029, a compound inhibiting GSDME-NTD-mediated pyroptosis, which shows promise as a therapeutic intervention for endometriosis. Importantly, our findings extend beyond endometriosis, highlighting GSDME-mediated pyroptosis as a broader pathway for IL-16 release and offering insights into potential treatments for various inflammatory conditions.


Assuntos
Endometriose , Animais , Feminino , Humanos , Camundongos , Endometriose/tratamento farmacológico , Inflamação , Interleucina-16 , Piroptose , Linfócitos T
2.
Cancer Biol Med ; 21(4)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38425216

RESUMO

OBJECTIVE: The human cluster of differentiation (CD)300A, a type-I transmembrane protein with immunoreceptor tyrosine-based inhibitory motifs, was investigated as a potential immune checkpoint for human natural killer (NK) cells targeting hematologic malignancies (HMs). METHODS: We implemented a stimulation system involving the CD300A ligand, phosphatidylserine (PS), exposed to the outer surface of malignant cells. Additionally, we utilized CD300A overexpression, a CD300A blocking system, and a xenotransplantation model to evaluate the impact of CD300A on NK cell efficacy against HMs in in vitro and in vivo settings. Furthermore, we explored the association between CD300A and HM progression in patients. RESULTS: Our findings indicated that PS hampers the function of NK cells. Increased CD300A expression inhibited HM lysis by NK cells. CD300A overexpression shortened the survival of HM-xenografted mice by impairing transplanted NK cells. Blocking PS-CD300A signals with antibodies significantly amplified the expression of lysis function-related proteins and effector cytokines in NK cells, thereby augmenting the ability to lyse HMs. Clinically, heightened CD300A expression correlated with shorter survival and an "exhausted" phenotype of intratumoral NK cells in patients with HMs or solid tumors. CONCLUSIONS: These results propose CD300A as a potential target for invigorating NK cell-based treatments against HMs.


Assuntos
Neoplasias Hematológicas , Células Matadoras Naturais , Receptores Imunológicos , Humanos , Células Matadoras Naturais/imunologia , Animais , Camundongos , Receptores Imunológicos/metabolismo , Receptores Imunológicos/genética , Receptores Imunológicos/imunologia , Neoplasias Hematológicas/imunologia , Neoplasias Hematológicas/terapia , Ensaios Antitumorais Modelo de Xenoenxerto , Feminino , Antígenos CD/metabolismo , Antígenos CD/imunologia , Masculino , Linhagem Celular Tumoral , Citotoxicidade Imunológica , Fosfatidilserinas/metabolismo
3.
Waste Manag ; 178: 144-154, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38401428

RESUMO

A material recovery facility (MRF) can transform municipal solid waste (MSW) into a valued commodity called refuse-derived fuel (RDF) as a promising solution to waste-to-energy conversion. The quality of the produced RDF significantly relies on the composition of in-feed waste and waste characterization method applied for auditing purposes, a process that is both time-consuming and fraught with potential hazards. This study focuses to enhance the workflow of the waste characterization process at an MRF. A solution named Smart Sight is proposed to detect and classify waste based on videos recorded after processing MSW through a mechanical sorting line consisting of bag breakers and trommel screens. A comprehensive dataset is created encompassing thirteen mixed waste classes from single and multi-family streams. The dataset is preprocessed with motion compensation techniques and frame differencing methods to extract and refine valuable frames. A one-stage YOLO detector model is then trained over the dataset. The experimental results show that the proposed method works efficiently at detecting and classifying waste objects in indoor MRF environments. Accuracy, precision, recall, and F1 score related to the proposed solution are found to be 0.70, 0.762, 0.69 and 0.72, respectively, with a mAP@0.5 of 0.716. The proposed approach is validated using data collected from local MRF by comparing the estimated waste composition values of the proposed solution with laboratory results obtained through current standardized industrial practices. Comparison reveals that waste characterization estimation obtained is consistent with the laboratory results, inferring that Smart-Sight is a viable tool for estimating waste composition.


Assuntos
Resíduos de Alimentos , Eliminação de Resíduos , Eliminação de Resíduos/métodos , Resíduos Sólidos/análise
4.
Cell Rep ; 43(2): 113786, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38363684

RESUMO

Type 1 innate lymphoid cells (ILC1s) possess adaptive immune features, which confer antigen-specific memory responses against haptens and viruses. However, the transcriptional regulation of memory ILC1 responses is currently not known. We show that retinoic acid receptor-related orphan receptor alpha (RORα) has high expression in memory ILC1s in murine contact hypersensitivity (CHS) models. RORα deficiency diminishes ILC1-mediated CHS responses significantly but has no effect on memory T cell-mediated CHS responses. During sensitization, RORα promotes sensitized-ILC1 expansion by suppressing expression of cell-cycle repressors in draining lymph nodes. RORα programs gene-expression patterns related to cell survival and is required for the long-term maintenance of memory ILC1s in the liver. Our findings reveal RORα to be a key transcriptional factor for sensitized-ILC1 expansion and long-term maintenance of memory ILC1s.


Assuntos
Imunidade Inata , Linfócitos , Animais , Camundongos , Sobrevivência Celular , Fígado , Linfonodos , Fatores de Transcrição
6.
Cell ; 186(19): 4235-4251.e20, 2023 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-37607536

RESUMO

Natural killer (NK) cells play indispensable roles in innate immune responses against tumor progression. To depict their phenotypic and functional diversities in the tumor microenvironment, we perform integrative single-cell RNA sequencing analyses on NK cells from 716 patients with cancer, covering 24 cancer types. We observed heterogeneity in NK cell composition in a tumor-type-specific manner. Notably, we have identified a group of tumor-associated NK cells that are enriched in tumors, show impaired anti-tumor functions, and are associated with unfavorable prognosis and resistance to immunotherapy. Specific myeloid cell subpopulations, in particular LAMP3+ dendritic cells, appear to mediate the regulation of NK cell anti-tumor immunity. Our study provides insights into NK-cell-based cancer immunity and highlights potential clinical utilities of NK cell subsets as therapeutic targets.


Assuntos
Células Matadoras Naturais , Neoplasias , Microambiente Tumoral , Humanos , Imunidade Inata , Imunoterapia , Células Matadoras Naturais/imunologia , Células Mieloides , Neoplasias/imunologia , Células Dendríticas/imunologia , Análise da Expressão Gênica de Célula Única
7.
Cell ; 186(14): 3033-3048.e20, 2023 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-37327784

RESUMO

The intestinal epithelial cells (IECs) constitute the primary barrier between host cells and numerous foreign antigens; it is unclear how IECs induce the protective immunity against pathogens while maintaining the immune tolerance to food. Here, we found IECs accumulate a less recognized 13-kD N-terminal fragment of GSDMD that is cleaved by caspase-3/7 in response to dietary antigens. Unlike the 30-kD GSDMD cleavage fragment that executes pyroptosis, the IEC-accumulated GSDMD cleavage fragment translocates to the nucleus and induces the transcription of CIITA and MHCII molecules, which in turn induces the Tr1 cells in upper small intestine. Mice treated with a caspase-3/7 inhibitor, mice with GSDMD mutation resistant to caspase-3/7 cleavage, mice with MHCII deficiency in IECs, and mice with Tr1 deficiency all displayed a disrupted food tolerance phenotype. Our study supports that differential cleavage of GSDMD can be understood as a regulatory hub controlling immunity versus tolerance in the small intestine.


Assuntos
Gasderminas , Proteínas de Neoplasias , Camundongos , Animais , Caspase 3/metabolismo , Proteínas de Neoplasias/metabolismo , Piroptose , Intestino Delgado/metabolismo , Tolerância Imunológica
8.
Front Immunol ; 14: 1113303, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37114050

RESUMO

Bispecific antibodies have attracted more attention in recent years for the treatment of tumors, in which most of them target CD3, which mediates the killing of tumor cells by T cells. However, T-cell engager may cause serious side effects, including neurotoxicity and cytokine release syndrome. More safe treatments are still needed to address unmet medical needs, and NK cell-based immunotherapy is a safer and more effective way to treat tumors. Our study developed two IgG-like bispecific antibodies with the same configuration: BT1 (BCMA×CD3) attracted T cells and tumor cells, while BK1 (BCMA×CD16) attracted NK cells and tumor cells. Our study showed that BK1 mediated NK cell activation and upregulated the expression of CD69, CD107a, IFN-γ and TNF. In addition, BK1 elicited a stronger antitumor effect than BT1 both in vitro and in vivo. Combinatorial treatment (BK1+BT1) showed a stronger antitumor effect than either treatment alone, as indicated by in vitro experiments and in vivo murine models. More importantly, BK1 induced fewer proinflammatory cytokines than BT1 both in vitro and in vivo. Surprisingly, BK1 reduced cytokine production in the combinatorial treatment, suggesting the indispensable role of NK cells in the control of cytokine secretion by T cells. In conclusion, our study compared NK-cell engagers and T-cell engagers targeting BCMA. The results indicated that NK-cell engagers were more effective with less proinflammatory cytokine production. Furthermore, the use of NK-cell engagers in combinatorial treatment helped to reduce cytokine secretion by T cells, suggesting a bright future for NK-cell engagers in clinical settings.


Assuntos
Anticorpos Biespecíficos , Neoplasias , Camundongos , Animais , Linfócitos T , Citocinas/metabolismo , Anticorpos Biespecíficos/farmacologia , Anticorpos Biespecíficos/uso terapêutico , Antígeno de Maturação de Linfócitos B/metabolismo , Células Matadoras Naturais
9.
RSC Adv ; 13(14): 9530-9538, 2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36968041

RESUMO

Composite coatings with anti-corrosive properties were fabricated using quaternized silicone oil modified graphene oxide and silicone polymer. Quaternized silicone oil was successfully synthesized through copolymerization of octamethyl cyclotetrasiloxane (D4), chloropropylsilane and triethylamine. The quaternized silicone oil modified graphene oxide (M-GO) was characterized by using 1H NMR, FT-IR, Small-angle X-ray scattering (SAXS), Thermogravimetry (TG) and Transmission electron microscopy (TEM). The results showed that the M-GO was formed successfully. The M-GO could be dispersed without aggregation in some organic solvents, and the concentration of M-GO could be up to 3 mg ml-1. The M-GO-reinforced silicone composites exhibited obvious improvements in thermal stability, mechanical properties and especially anticorrosive properties with the highest E corr (-121 mV) and the lowest I corr (6.058 × 10-9 A cm-2), and the protection efficiency of the matrix could reach 99.97%. The anticorrosive mechanism of the fabricated composite coatings was investigated. This work provides a ready strategy for modification of GO and fabrication of high performance graphene-based silicone composite materials.

10.
J Hematol Oncol ; 16(1): 30, 2023 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-36973755

RESUMO

BACKGROUND: Cancer cachexia is a deadly wasting syndrome that accompanies various diseases (including ~ 50% of cancers). Clinical studies have established that cachexia is not a nutritional deficiency and is linked to expression of certain proteins (e.g., interleukin-6 and C-reactive protein), but much remains unknown about this often fatal syndrome. METHODS: First, cachexia was created in experimental mouse models of lung cancer. Samples of human lung cancer were used to identify the association between the serum lipocalin 2 (LCN2) level and cachexia progression. Then, mouse models with LCN2 blockade or LCN2 overexpression were used to ascertain the role of LCN2 upon ferroptosis and cachexia. Furthermore, antibody depletion of tissue-infiltrating neutrophils (TI-Neu), as well as myeloid-specific-knockout of Lcn2, were undertaken to reveal if LCN2 secreted by TI-Neu caused cachexia. Finally, chemical inhibition of ferroptosis was conducted to illustrate the effect of ferroptosis upon tissue wasting. RESULTS: Protein expression of LCN2 was higher in the wasting adipose tissue and muscle tissues of experimental mouse models of lung cancer cachexia. Moreover, evaluation of lung cancer patients revealed an association between the serum LCN2 level and cachexia progression. Inhibition of LCN2 expression reduced cachexia symptoms significantly and inhibited tissue wasting in vivo. Strikingly, we discovered a significant increase in the number of TI-Neu in wasting tissues, and that these innate immune cells secreted high levels of LCN2. Antibody depletion of TI-Neu, as well as myeloid-specific-knockout of Lcn2, prevented ferroptosis and tissue wasting in experimental models of lung cancer cachexia. Chemical inhibition of ferroptosis alleviated tissue wasting significantly and also prolonged the survival of cachectic mice. CONCLUSIONS: Our study provides new insights into how LCN2-induced ferroptosis functionally impacts tissue wasting. We identified LCN2 as a potential target in the treatment of cancer cachexia.


Assuntos
Ferroptose , Neoplasias Pulmonares , Humanos , Camundongos , Animais , Caquexia/etiologia , Caquexia/metabolismo , Caquexia/prevenção & controle , Lipocalina-2 , Neutrófilos/metabolismo , Neoplasias Pulmonares/complicações , Músculos/metabolismo
11.
Cancer Sci ; 114(6): 2386-2399, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36919759

RESUMO

Hepatocellular carcinoma (HCC) is one of the most lethal malignancies, whose initiation and development are driven by alterations in driver genes. In this study, we identified four driver genes (TP53, PTEN, CTNNB1, and KRAS) that show a high frequency of somatic mutations or copy number variations (CNVs) in patients with HCC. Four different spontaneous HCC mouse models were constructed to screen for changes in various kinase signaling pathways. The sgTrp53 + sgPten tumor upregulated mTOR and noncanonical nuclear factor-κB signaling, which was shown to be strongly inhibited by rapamycin (an mTOR inhibitor) in vitro and in vivo. The JAK-signal transducer and activator of transcription (STAT) signaling was activated in Ctnnb1mut + sgPten tumor, the proliferation of which was strongly inhibited by napabucasin (a STAT3 inhibitor). Additionally, mTOR, cytoskeleton, and AMPK signaling were upregulated while rapamycin and ezrin inhibitors exerted potent antiproliferative effects in sgPten + KrasG12D tumor. We found that JAK-STAT, MAPK, and cytoskeleton signaling were activated in sgTrp53 + KrasG12D tumor and the combination of sorafenib and napabucasin led to the complete inhibition of tumor growth in vivo. In patients with HCC who had the same molecular classification as our mouse models, the downstream signaling pathway landscapes associated with genomic alterations were identical. Our research provides novel targeted therapeutic options for the clinical treatment of HCC, based on the presence of specific genetic alterations within the tumor.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Camundongos , Animais , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Variações do Número de Cópias de DNA/genética , Transdução de Sinais/genética , Serina-Treonina Quinases TOR/metabolismo , Sirolimo/farmacologia , Linhagem Celular Tumoral
12.
Nano Lett ; 23(7): 2733-2742, 2023 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-36930562

RESUMO

Dendritic cells (DCs) play an essential role in both the induction of the immune response and the maintenance of immune tolerance, with any malfunction of DCs potentially causing several diseases. While gene-based therapy for DC manipulation is a promising approach, it remains challenging due to the lack of efficient delivery systems for DC targeting. Herein, we describe a novel bacterial nanomedicine (BNM) system for pathogen recognition-mediated DCs-specific gene silencing and gene editing. BNMs contain components from bacterial outer membranes and achieve efficient DC targeting through the recognition of pathogen-associated molecular patterns by pattern recognition receptors on DCs. The targeting efficiency of BNMs is reduced in DCs lacking toll-like receptor 4, which is responsible for recognizing lipopolysaccharide, a major component of the bacterial outer membrane. As a proof-of-concept demonstration, we present gene-based therapy mediated by BNMs for enhancing antigen cross-presentation in DCs, which generates a remarkable antitumor effect.


Assuntos
Apresentação de Antígeno , Lipopolissacarídeos , Células Dendríticas , Inativação Gênica
13.
Immun Ageing ; 20(1): 14, 2023 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-36934284

RESUMO

The aging lungs are vulnerable to chronic pulmonary diseases; however, the underlying mechanisms are not well understood. In this study, we compared the aging lungs of 20-24-month-old mice with the young of 10-16-week-old mice, and found that aging airway epithelial cells significantly upregulated the expression of uteroglobin-related protein 1 (UGRP1), which was responsible for the higher levels of CCL6 in the aging lungs. Alveolar macrophages (AMs) changed intrinsically with aging, exhibiting a decrease in cell number and altered gene expression. Using terminal differentiation trajectories, a population of MARCO+ AMs with the ability to produce CCL6 was identified in the aging lungs. Upregulated UGRP1was demonstrated to modulate CCL6 production of AMs in the UGRP1-MARCO pair in vivo and in vitro. Furthermore, MARCO+ AMs aggravated bleomycin-induced pulmonary fibrosis in a CCL6-dependent manner in the aged mice, and blocking MARCO or neutralizing CCL6 significantly inhibited pulmonary fibrosis, similar to the depletion of AMs. The age-related upregulation of UGRP1 and MARCO+ AMs, involved in the progression of lung fibrosis, was also observed in human lung tissues. Thus, UGRP1 modulated MARCO+ AMs regarding the age-related lung fibrosis in a CCL6-dependent manner, which is key to establishing optimal targeting for the aging population.

14.
Nat Immunol ; 24(5): 802-813, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36959292

RESUMO

The highly variable response rates to immunotherapies underscore our limited knowledge about how tumors can manipulate immune cells. Here the membrane topology of natural killer (NK) cells from patients with liver cancer showed that intratumoral NK cells have fewer membrane protrusions compared with liver NK cells outside tumors and with peripheral NK cells. Dysregulation of these protrusions prevented intratumoral NK cells from recognizing tumor cells, from forming lytic immunological synapses and from killing tumor cells. The membranes of intratumoral NK cells have altered sphingomyelin (SM) content and dysregulated serine metabolism in tumors contributed to the decrease in SM levels of intratumoral NK cells. Inhibition of SM biosynthesis in peripheral NK cells phenocopied the disrupted membrane topology and cytotoxicity of the intratumoral NK cells. Targeting sphingomyelinase confers powerful antitumor efficacy, both as a monotherapy and as a combination therapy with checkpoint blockade.


Assuntos
Células Matadoras Naturais , Neoplasias Hepáticas , Humanos , Sinapses Imunológicas , Citotoxicidade Imunológica
15.
J Immunother Cancer ; 11(2)2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36725083

RESUMO

BACKGROUND: To enhance the efficacy of adoptive NK cell therapy against solid tumors, NK cells must be modified to resist exhaustion in the tumor microenvironment (TME). However, the molecular checkpoint underlying NK cell exhaustion in the TME remains elusive. METHODS: We analyzed the correlation between TIPE2 expression and NK cell functional exhaustion in the TME both in humans and mice by single-cell transcriptomic analysis and by using gene reporter mice. We investigated the effects of TIPE2 deletion on adoptively transferred NK cell therapy against cancers by using NK cells from NK-specific Tipe2-deficient mice or peripheral blood-derived or induced pluripotent stem cell (iPSC)-derived human NK cells with TIPE2 deletion by CRISPR/Cas9. We also investigated the potential synergy of double deletion of TIPE2 and another checkpoint molecule, CISH. RESULTS: By single-cell transcriptomic analysis and by using gene reporter mice, we found that TIPE2 expression correlated with NK cell exhaustion in the TME both in humans and mice and that the TIPE2 high NK cell subset correlated with poorer survival of tumor patients. TIPE2 deletion promoted the antitumor activity of adoptively transferred mouse NK cells and adoptively transferred human NK cells, either derived from peripheral blood or differentiated from iPSCs. TIPE2 deletion rendered NK cells with elevated capacities for tumor infiltration and effector functions. TIPE2 deletion also synergized with CISH deletion to further improve antitumor activity in vivo. CONCLUSIONS: This study highlighted TIPE2 targeting as a promising approach for enhancing adoptive NK cell therapy against solid tumors.


Assuntos
Imunoterapia Adotiva , Peptídeos e Proteínas de Sinalização Intracelular , Células Matadoras Naturais , Neoplasias , Animais , Humanos , Camundongos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Células Matadoras Naturais/metabolismo , Neoplasias/metabolismo , Microambiente Tumoral
16.
Adv Sci (Weinh) ; 10(12): e2207499, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36807566

RESUMO

Natural killer (NK) cells not only are innate effector lymphocytes that directly participate in tumor surveillance but are also essential helpers in the antitumor CD8+ T-cell response. However, the molecular mechanisms and potential checkpoints regulating NK cell helper functions remain elusive. Here, it is shown that the T-bet/Eomes-IFN-γ axis in NK cells is essential for CD8+ T cell-dependent tumor control, whereas T-bet-dependent NK cell effector functions are required for an optimal response to anti-PD-L1 immunotherapy. Importantly, NK cell-expressed TIPE2 (tumor necrosis factor-alpha-induced protein-8 like-2) represents a checkpoint molecule for NK cell helper function, since Tipe2 deletion in NK cells not only enhances NK-intrinsic antitumor activity but also indirectly improves the antitumor CD8+ T cell response by promoting T-bet/Eomes-dependent NK cell effector functions. These studies thus reveal TIPE2 as a checkpoint for NK cell helper function, whose targeting might boost the antitumor T cell response in addition to T cell-based immunotherapy.


Assuntos
Linfócitos T CD8-Positivos , Neoplasias , Humanos , Células Matadoras Naturais , Neoplasias/terapia , Neoplasias/patologia , Proteínas , Imunoterapia
17.
Hepatology ; 78(1): 72-87, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-36626624

RESUMO

BACKGROUND AND AIMS: The innate-like mucosa-associated invariant T (MAIT) cells are enriched in human liver and have been linked to human HCC. However, their contributions to the progression of HCC are controversial due to the heterogeneity of MAIT cells, and new MAIT cell subsets remain to be explored. APPROACH AND RESULTS: Combining single cell RNA sequencing (scRNA-seq) and flow cytometry analysis, we performed phenotypic and functional studies and found that FOXP3 + CXCR3 + MAIT cells in HCC patients were regulatory MAIT cells (MAITregs) with high immunosuppressive potential. These MAITregs were induced under Treg-inducing condition and predominantly from FOXP3 - CXCR3 + MAIT cells, which displayed mild Treg-related features and represented a pre-MAITreg reservoir. In addition, the induction and function of MAITregs were promoted by ß1 adrenergic receptor signaling in pre-MAITregs and MAITregs, respectively. In HCC patients, high proportion of the intratumoral MAITregs inhibited antitumor immune responses and was associated with poor clinical outcomes. CONCLUSIONS: Together, we reveal an immunosuppressive subset of MAIT cells in HCC patients that contributes to HCC progression, and propose a control through neuroimmune crosstalk.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Células T Invariantes Associadas à Mucosa , Humanos , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Mucosa , Fatores de Transcrição Forkhead , Receptores Adrenérgicos
18.
Hepatology ; 77(3): 965-981, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35938354

RESUMO

BACKGROUND AND AIMS: Chronic HBV infection is the leading cause of HCC and a serious health problem in China, East Asia, and North African countries. Effective treatment of HBV-related HCC is currently unavailable. This study evaluated the therapeutic potential of T-cell immunoreceptor with Ig and ITIM domains (TIGIT) blockade in HBV-related HCC. APPROACH AND RESULTS: A mouse model of spontaneous HBV-related HCC was generated by replacing wild-type hepatocytes with HBsAg + hepatocytes (namely HBs-HepR mice). The tumors in HBs-HepR mice were inflammation-associated HCC, similar to HBV-related HCC in patients, which was distinguished from other HCC mouse models, such as diethylnitrosamine-induced HCC, TGF-ß-activated kinase 1 knockout-induced HCC, HCC in a stelic animal model, or NASH-induced HCC. HCC in HBs-HepR mice was characterized by an increased number of CD8 + T cells, whereas the production of IL-2, TNF-α, and interferon-gamma (IFN-γ) by intrahepatic CD8 + T cells was decreased. Increased expression of TIGIT on CD8 + T cells was responsible for functional exhaustion. The therapeutic effect of TIGIT blockade was investigated at the early and middle stages of HCC progression in HBs-HepR mice. TIGIT blockade reinvigorated intrahepatic CD8 + T cells with increased TNF-α and IFN-γ production and an increased number of CD8 + T cells in tumors, thereby slowing the development of HCC in HBs-HepR mice. Blocking PD-L1 did not show direct therapeutic effects or synergize with TIGIT blockade. CONCLUSIONS: Blockade of TIGIT alone enhanced the antitumor activity of CD8 + T cells during the progression of HBV-related HCC in a spontaneous HCC mouse model.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Camundongos , Carcinoma Hepatocelular/patologia , Linfócitos T CD8-Positivos , Vírus da Hepatite B , Neoplasias Hepáticas/patologia , Receptor de Morte Celular Programada 1 , Receptores de Antígenos de Linfócitos T/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Imunoglobulinas/imunologia
19.
Front Cell Infect Microbiol ; 13: 1330087, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38287976

RESUMO

Previous studies have shown that bacterial translocation may play an important role in worsening gastrointestinal injury during sepsis. However, the dynamics of specific microbiota components in intestinal tissues at different sepsis stages remain unclear. Rats receiving intraperitoneal lipopolysaccharide (LPS) were sacrificed at 12 h and 48 h post-injection. Routine blood, serum cytokines, and microbiota in colon tissue, colonic contents, and lung tissue at different time points were assessed. Migratory microbial components in colonic tissue at 12 h and 48 h post-LPS were identified using source tracking, characteristic component identification, and abundance difference analyses. Colonic tissue microbiota changed dynamically over time after LPS injection, involving translocation of microbial components from colon contents and lung tissue at different time points. Bacteria migrating to colon tissue at 12 h sepsis were mainly from colonic contents, while those at 48 h were predominantly from the lung tissue. The migratory microbial components in colon tissue were widely associated with blood indicators and colonizing genus abundance and microbiota functionality in colon tissue. In this study, the temporal dynamics of bacterial translocation from various sources into colon tissues at different sepsis progression stages were characterized for the first time, and the species composition of these migrating microbes was delineated. These bacterial migrants may contribute to the pathophysiological processes in sepsis through direct interactions or indirectly by modulating colonic microbiota community structure and function.


Assuntos
Microbiota , Sepse , Ratos , Animais , Lipopolissacarídeos , Sepse/microbiologia , Intestinos , Colo/microbiologia
20.
Front Immunol ; 13: 1040256, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36389751

RESUMO

More than 85% of colorectal cancer (CRC) patients, who are with microsatellite stability (MSS), are resistant to immune checkpoint blockade (ICB) treatment. To overcome this resistance, combination therapy with chemotherapy is the most common choice. However, many CRC patients do not benefit more from combination therapy than chemotherapy alone. We hypothesize that severe immunosuppression, caused by chemotherapy administered at the maximum tolerated dose, antagonizes the ICB treatment. In this study, we found that low-dose oxaliplatin (OX), an immunogenic cell death (ICD)-induced drug, increased the antitumor response of TIGIT blockade against CT26 tumor, which is regarded as a MSS tumor. Combined treatment with OX and TIGIT blockade fostered CD8+ T-cell infiltration into tumors and delayed tumor progression. Importantly, only low-dose immunogenic chemotherapeutics successfully sensitized CT26 tumors to TIGIT blockade. In contrast, full-dose OX induces severe immunosuppression and impaired the efficacy of combination therapy. Further, we also found that lack of synergy between nonimmunogenic chemotherapeutics and TIGIT blockade. Consequently, this study suggests that the strategies of combination treatment of chemotherapy and ICB should be re-evaluated. The chemotherapeutics should be chosen for the potential to ICD and the dosage and regimen should be also optimized.


Assuntos
Neoplasias do Colo , Inibidores de Checkpoint Imunológico , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Neoplasias do Colo/tratamento farmacológico , Oxaliplatina/farmacologia , Oxaliplatina/uso terapêutico , Repetições de Microssatélites , Receptores Imunológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA